
KMM - Kotlin
Multiplatform
Mobile basics

Topic for discussion:

Presentation by Rohan Pambhar
(Android Engineer)

Basics of KMM

Kotlin Multiplatform Mobile (KMM) is a framework that allows
you to build an application that targets Android and iOS
mobile platforms. More specifically, the UI layer (in Clean
Architecture terms) is the only layer that needs to be
developed natively while allowing most of the rest of the
architectural layers to be shared.

The shared architecture is provided to each native app as a
compiled package.

This package is then accessed within the native app code.

KMM has the potential to be the foundation for several
platforms, including Android, JavaScript, Java, Kotlin, and
Swift iOS codebases.

Below is the image that clarifies what KMM looks like.

This is how your mobile application architecture looks like when
you use KMM.

Setup environment to use KMM

Install necessary tools.
Android Studio

External JDK
KMM plugin
Kotlin plugin

If you are targeting an iOS application, then install
XCode

Cocoapods

You should install the latest stable versions for compatibility and
better performance.

In the Android Studio terminal or your command-line tool,
run the following command to install the tool using
Homebrew: brew install doctor
If you don't have Homebrew yet, install it or see the KDoctor
README for other ways to install it.
After the installation is completed, call KDoctor in the
console: kdoctor
If KDoctor diagnoses any problems while checking your
environment, review the output for issues and possible
solutions

To make sure everything works as expected,
install and run the KDoctor tool:

KDoctor works on macOS only.

1.

2.

3.

4.

https://brew.sh/
https://github.com/Kotlin/kdoctor#installation

Understand the KMM project structure

This is how your root project looks like -

This is a basic structure of a cross-platform mobile project:

The iOS application is produced from an Xcode project. It’s
stored in a separate directory within the root project.

Xcode uses its own build system; thus, the iOS application
project isn’t connected with other parts of the Multiplatform
Mobile project via Gradle.

Instead, it uses the shared module as an external artifact –
framework.

