
Kotlin: Rules for
writing classes



Rules for Writing classes

You have inferred your desire for stability. Mostly this means you
should aim for immutability as gaining stability through
notifying composition requires a lot of work, such as was done
by the creation of the MutableState<T> class.

1. Do not use var as properties inside state
holding classes

As these are mutable, but do not notify composition, they will
make the composables which use them unstable.

Do:
data class InherentlyStableClass(val text: String)

Don’t:

data class InherentlyUnstableClass(var text: String)



2. Private properties still affect stability

As of the time of writing, it is uncertain if this is a design choice or
a bug, but let’s slightly modify our stable class from above.

The compiler report will mark this class as unstable:

Looking at the results, it’s fairly obvious that the compiler
struggles here. It marks both individual properties as stable, even
though one is not, but marks the whole class as unstable.





3. Do not use classes that belong to an
external module to form state

Sadly, Compose can only infer stability for classes, interfaces, and
objects that originate from a module compiled by the Compose
Compiler. This means that any externally originated class will be
marked as unstable, regardless of its true stability.

Let’s say you have the following class which comes from an
external module and is therefore unstable:



However, this is troublesome. Now you’ve made our state class
unstable and therefore unskippable. This could potentially cause
performance issues.

Luckily there are multiple ways to get around this.

If you only need a few properties of Car to form RegisteredCarState,
you may simply flatten it as follows:

A common way to build a state using it would be to do the
following:





However, this may not be appropriate in cases where you need
the whole object with all of its properties.

In such cases, you may create a local stable counterpart such as:

The two are identical, but CarState is stable.

Because users might need to convert to and from these classes
depending on which architectural layer they are dealing with,
you should provide easy mapping functions going both ways
such as:

fun Car.toCarState(): CarState
fun CarState.toCar(): Car



Things such as List, Set, and Map might seem immutable at first,
but they are not and the Compiler will mark them as unstable.

Currently, there are two alternatives, the more straightforward
one includes using Kotlin’s immutable collections. However,
these are still pre-release and might not be viable.

The other solution, which is a technical hack and not officially
advised but used by the community, is to wrap your lists and
mark the wrapper class as @Immutable.

4. Do not expect immutability from
collections



5. Flows are unstable
Even though they might seem stable since they are observable,
Flows do not notify composition when they emit new values.
This makes them inherently unstable. Use them only if
absolutely necessary.

6. Inlined Composables are neither
restartable nor skippable

As with all inlined functions, these can present performance
benefits. Some common Composables such as Column, Row,
and Box are all inlined. As such this is not an admonishment of
inlining Composables, just a suggestion that you should be
mindful when inlining Composables, or using inlined
Composables and be aware of how they affect the parent scope
recomposition.




