
Workshop hosted by Juli 
(Android Engineer)

MacroBenchmark
library for
measuring app
performance.

Topic for discussion: 



What is Microbench mark?
The Jetpack Microbenchmark library allows you to quickly
benchmark your Android native code (Kotlin or Java) from within
Android Studio. The library handles warmup, measures your code
performance and allocation counts, and outputs benchmarking
results to both the Android Studio console and a JSON file with
more detail.

Use the Macrobenchmark library for testing larger use-cases of your
application, including application startup and complex UI
manipulations, such as scrolling a RecyclerView or running
animations.

We recommend to profile your code before writing a benchmark.
This helps you find expensive operations that are worth optimizing.
It can also expose why the operations are slow by showing what is
happening while they run. These could be running on a low-priority
thread, sleeping due to disk access, or unexpectedly calling into an
expensive function, like bitmap decoding.

https://developer.android.com/studio/profile/microbenchmark-write#benchmark-results
https://developer.android.com/studio/profile/benchmarking-in-ci#benchmark-data-example
https://developer.android.com/studio/profile


Project setup
Right-click your project or module in the Project panel in Android
Studio and click New > Module.

Select Benchmark from the Templates pane.

You can customize the target application (the app to be
benchmarked), as well as package and module name for the new
macrobenchmark module.

Click Finish.



Set up the application

To benchmark an app (called the target of the macro benchmark),
that app must be profileable, which enables reading detailed trace
information. Enable this in the <application> tag of the app's
AndroidManifest.xml



Configure the benchmarked app as close to the release version (or
production) as possible. Set it up as non-debuggable and preferably
with minification on, which improves performance. You typically do
this by creating a copy of the release variant, which performs the
same, but is signed locally with debug keys. Alternatively you can
use initWith to instruct Gradle to do it for you



Create a macrobenchmark class

Benchmark testing is provided through the MacrobenchmarkRule
JUnit4 rule API in the Macrobenchmark library. It contains a
measureRepeated method which allows you to specify various
conditions on how the target application should be run and
benchmarked.

You need to at least specify the packageName of the target
application, what metrics you want to measure and how many
iterations the benchmark should run.





Run the benchmark

You can also run all benchmarks in a Gradle module from the
command line by executing the connectedCheck command:

You should benchmark on real devices and not on Android
emulators. If you attempt to run the benchmarks on an emulator, it
will fail at runtime with a warning that it’s likely to give incorrect
results. While technically you can run it on an emulator, you’re
basically measuring your host machine performance — if it’s under
heavy load, your benchmarks will appear slower and vice versa.



During execution, the benchmark will start and stop your
app several times (based on iterations) and afterwards it
will output results to Android Studio




