
Android:
Monitor
Network
Connectivity

Topic for discussion: 

Presented by 
Rohan Pambhar

(Android Engineer)



Preface

Most android applications use an internet
connection, and as android developers, we
always implement a mechanism that handles
the internet connection and the application
state based on the internet connectivity.

We mostly struggle to handle this mechanism to
make it work seamlessly without affecting so
much of our android code.

So, here in this post, I'll be sharing a proper way
to handle the internet connection state in
application and update your UI accordingly



Connectivity Manager class
The ConnectivityManager provides an API that
enables you to request that the device connects
to a network based on various conditions,
including device capabilities and data transport
options.

The callback implementation provides
information to your app about the device's
connection status and the capabilities of the
currently connected network.

 The API lets you determine whether the device is
currently connected to a network that satisfies
your app’s requirements.



Easy to implement Connectivity Manager
Configure a network request

Declare a NetworkRequest that describes
your app’s network connection needs. The
following code creates a request for a network
connection to the internet and uses a Wi-Fi or
cellular connection for the transport type.

Use NET_CAPABILITY_NOT_METERED to
determine whether the connection is expensive.

https://developer.android.com/reference/android/net/NetworkRequest


Configure a network callback

When you register the NetworkRequest with
the ConnectivityManager, you must implement
a NetworkCallback to receive notifications
about changes in the connection status and
network capabilities.

The most commonly implemented functions in
the NetworkCallback include the following:

onAvailable()
onLost()
onCapabilitiesChanged()

https://developer.android.com/reference/android/net/ConnectivityManager.NetworkCallback
https://developer.android.com/training/monitoring-device-state/reference/android/net/ConnectivityManager.NetworkCallback#onAvailable(android.net.Network)
https://developer.android.com/training/monitoring-device-state/reference/android/net/ConnectivityManager.NetworkCallback#onLost(android.net.Network)
https://developer.android.com/training/monitoring-device-state/reference/android/net/ConnectivityManager.NetworkCallback#onCapabilitiesChanged(android.net.Network,%20android.net.NetworkCapabilities)




Register for network updates

After you declare the NetworkRequest and
NetworkCallback, use the requestNetwork()
or registerNetworkCallback() functions to
search for a network to connect from the
device that satisfies the NetworkRequest. The
status is then reported to the NetworkCallback.

https://developer.android.com/reference/android/net/ConnectivityManager#requestNetwork(android.net.NetworkRequest,%20android.net.ConnectivityManager.NetworkCallback)
https://developer.android.com/reference/android/net/ConnectivityManager#registerNetworkCallback(android.net.NetworkRequest,%20android.net.ConnectivityManager.NetworkCallback)


Make sure you register a callback once in the
application's lifecycle. So I suggest registering the
event in the onCreate() method of the Application
class.

And then, you can also notify your activities and
fragments using LiveData.

For that, create a ‘Singleton’ class with a
‘MutableLivedata’ of type ‘Boolean’ to maintain its
instance throughout the application's lifecycle.

See the code snippet given below.

Important Note:






